Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
2.
Genet Med ; 26(2): 101029, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37982373

ABSTRACT

PURPOSE: The terminology used for gene-disease curation and variant annotation to describe inheritance, allelic requirement, and both sequence and functional consequences of a variant is currently not standardized. There is considerable discrepancy in the literature and across clinical variant reporting in the derivation and application of terms. Here, we standardize the terminology for the characterization of disease-gene relationships to facilitate harmonized global curation and to support variant classification within the ACMG/AMP framework. METHODS: Terminology for inheritance, allelic requirement, and both structural and functional consequences of a variant used by Gene Curation Coalition members and partner organizations was collated and reviewed. Harmonized terminology with definitions and use examples was created, reviewed, and validated. RESULTS: We present a standardized terminology to describe gene-disease relationships, and to support variant annotation. We demonstrate application of the terminology for classification of variation in the ACMG SF 2.0 genes recommended for reporting of secondary findings. Consensus terms were agreed and formalized in both Sequence Ontology (SO) and Human Phenotype Ontology (HPO) ontologies. Gene Curation Coalition member groups intend to use or map to these terms in their respective resources. CONCLUSION: The terminology standardization presented here will improve harmonization, facilitate the pooling of curation datasets across international curation efforts and, in turn, improve consistency in variant classification and genetic test interpretation.


Subject(s)
Genetic Testing , Genetic Variation , Humans , Alleles , Databases, Genetic
3.
medRxiv ; 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37066232

ABSTRACT

PURPOSE: The terminology used for gene-disease curation and variant annotation to describe inheritance, allelic requirement, and both sequence and functional consequences of a variant is currently not standardized. There is considerable discrepancy in the literature and across clinical variant reporting in the derivation and application of terms. Here we standardize the terminology for the characterization of disease-gene relationships to facilitate harmonized global curation, and to support variant classification within the ACMG/AMP framework. METHODS: Terminology for inheritance, allelic requirement, and both structural and functional consequences of a variant used by Gene Curation Coalition (GenCC) members and partner organizations was collated and reviewed. Harmonized terminology with definitions and use examples was created, reviewed, and validated. RESULTS: We present a standardized terminology to describe gene-disease relationships, and to support variant annotation. We demonstrate application of the terminology for classification of variation in the ACMG SF 2.0 genes recommended for reporting of secondary findings. Consensus terms were agreed and formalized in both sequence ontology (SO) and human phenotype ontology (HPO) ontologies. GenCC member groups intend to use or map to these terms in their respective resources. CONCLUSION: The terminology standardization presented here will improve harmonization, facilitate the pooling of curation datasets across international curation efforts and, in turn, improve consistency in variant classification and genetic test interpretation.

4.
J Med Genet ; 60(8): 810-818, 2023 08.
Article in English | MEDLINE | ID: mdl-36669873

ABSTRACT

BACKGROUND: Genomic variant prioritisation is one of the most significant bottlenecks to mainstream genomic testing in healthcare. Tools to improve precision while ensuring high recall are critical to successful mainstream clinical genomic testing, in particular for whole genome sequencing where millions of variants must be considered for each patient. METHODS: We developed EyeG2P, a publicly available database and web application using the Ensembl Variant Effect Predictor. EyeG2P is tailored for efficient variant prioritisation for individuals with inherited ophthalmic conditions. We assessed the sensitivity of EyeG2P in 1234 individuals with a broad range of eye conditions who had previously received a confirmed molecular diagnosis through routine genomic diagnostic approaches. For a prospective cohort of 83 individuals, we assessed the precision of EyeG2P in comparison with routine diagnostic approaches. For 10 additional individuals, we assessed the utility of EyeG2P for whole genome analysis. RESULTS: EyeG2P had 99.5% sensitivity for genomic variants previously identified as clinically relevant through routine diagnostic analysis (n=1234 individuals). Prospectively, EyeG2P enabled a significant increase in precision (35% on average) in comparison with routine testing strategies (p<0.001). We demonstrate that incorporation of EyeG2P into whole genome sequencing analysis strategies can reduce the number of variants for analysis to six variants, on average, while maintaining high diagnostic yield. CONCLUSION: Automated filtering of genomic variants through EyeG2P can increase the efficiency of diagnostic testing for individuals with a broad range of inherited ophthalmic disorders.


Subject(s)
Databases, Genetic , Eye Diseases , Genetic Testing , Genome, Human , Genomics , Eye Diseases/genetics , Humans , Genetic Variation
5.
Nucleic Acids Res ; 51(D1): D942-D949, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36420896

ABSTRACT

GENCODE produces high quality gene and transcript annotation for the human and mouse genomes. All GENCODE annotation is supported by experimental data and serves as a reference for genome biology and clinical genomics. The GENCODE consortium generates targeted experimental data, develops bioinformatic tools and carries out analyses that, along with externally produced data and methods, support the identification and annotation of transcript structures and the determination of their function. Here, we present an update on the annotation of human and mouse genes, including developments in the tools, data, analyses and major collaborations which underpin this progress. For example, we report the creation of a set of non-canonical ORFs identified in GENCODE transcripts, the LRGASP collaboration to assess the use of long transcriptomic data to build transcript models, the progress in collaborations with RefSeq and UniProt to increase convergence in the annotation of human and mouse protein-coding genes, the propagation of GENCODE across the human pan-genome and the development of new tools to support annotation of regulatory features by GENCODE. Our annotation is accessible via Ensembl, the UCSC Genome Browser and https://www.gencodegenes.org.


Subject(s)
Computational Biology , Genome, Human , Humans , Animals , Mice , Molecular Sequence Annotation , Computational Biology/methods , Genome, Human/genetics , Transcriptome/genetics , Gene Expression Profiling , Databases, Genetic
6.
Nucleic Acids Res ; 51(D1): D977-D985, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36350656

ABSTRACT

The NHGRI-EBI GWAS Catalog (www.ebi.ac.uk/gwas) is a FAIR knowledgebase providing detailed, structured, standardised and interoperable genome-wide association study (GWAS) data to >200 000 users per year from academic research, healthcare and industry. The Catalog contains variant-trait associations and supporting metadata for >45 000 published GWAS across >5000 human traits, and >40 000 full P-value summary statistics datasets. Content is curated from publications or acquired via author submission of prepublication summary statistics through a new submission portal and validation tool. GWAS data volume has vastly increased in recent years. We have updated our software to meet this scaling challenge and to enable rapid release of submitted summary statistics. The scope of the repository has expanded to include additional data types of high interest to the community, including sequencing-based GWAS, gene-based analyses and copy number variation analyses. Community outreach has increased the number of shared datasets from under-represented traits, e.g. cancer, and we continue to contribute to awareness of the lack of population diversity in GWAS. Interoperability of the Catalog has been enhanced through links to other resources including the Polygenic Score Catalog and the International Mouse Phenotyping Consortium, refinements to GWAS trait annotation, and the development of a standard format for GWAS data.


Subject(s)
Genome-Wide Association Study , Knowledge Bases , Animals , Humans , Mice , DNA Copy Number Variations , National Human Genome Research Institute (U.S.) , Phenotype , Polymorphism, Single Nucleotide , Software , United States
7.
ERJ Open Res ; 8(4)2022 Oct.
Article in English | MEDLINE | ID: mdl-36478917

ABSTRACT

Introduction: Early eradication of methicillin-resistant Staphylococcus aureus (MRSA) in cystic fibrosis is desirable. Prospective studies are challenging owing to the feasibility of recruiting patients with a rare event in an orphan disease. Our prior randomised study (Staph Aureus Resistance-Treat Or Observe (STAR-too)) showed improved clearance and outcomes with aggressive therapy compared to no treatment. We present a novel trial design to guide treatment for eradicating incident infection with a focus on feasibility. Methods: Subjects with cystic fibrosis with incident MRSA infection were enrolled into the Staph Aureus Resistance-Treat Early And Repeat (STAR-ter) protocol and treated with a combination of an oral antibiotic and topical (nare and throat) decolonisation. The primary outcome was MRSA-negative respiratory culture at Day 28, i.e. 14 days after completion of oral antibiotics. What was novel about this study design was that the control/comparator group was the untreated group of the STAR-too trial. This design was developed because having a "no treatment" group would be unethical given prior findings and a superiority design would delay the time to results based on small numbers of eligible subjects. Both studies used the same inclusion and exclusion criteria and drew subjects from the same geographic regions. The main difference between the studies was the use of a single oral antibiotic, trimethoprim-sulfamethoxazole, rather than the combination with oral rifampin used in STAR-too. Discussion: An innovative approach to address a clinical question for a rare event in an orphan disease, cystic fibrosis, is presented to enhance current clinical evidence to guide cystic fibrosis care in relation to new MRSA infection.

8.
Genet Med ; 24(8): 1732-1742, 2022 08.
Article in English | MEDLINE | ID: mdl-35507016

ABSTRACT

PURPOSE: Several groups and resources provide information that pertains to the validity of gene-disease relationships used in genomic medicine and research; however, universal standards and terminologies to define the evidence base for the role of a gene in disease and a single harmonized resource were lacking. To tackle this issue, the Gene Curation Coalition (GenCC) was formed. METHODS: The GenCC drafted harmonized definitions for differing levels of gene-disease validity on the basis of existing resources, and performed a modified Delphi survey with 3 rounds to narrow the list of terms. The GenCC also developed a unified database to display curated gene-disease validity assertions from its members. RESULTS: On the basis of 241 survey responses from the genetics community, a consensus term set was chosen for grading gene-disease validity and database submissions. As of December 2021, the database contained 15,241 gene-disease assertions on 4569 unique genes from 12 submitters. When comparing submissions to the database from distinct sources, conflicts in assertions of gene-disease validity ranged from 5.3% to 13.4%. CONCLUSION: Terminology standardization, sharing of gene-disease validity classifications, and resolution of curation conflicts will facilitate collaborations across international curation efforts and in turn, improve consistency in genetic testing and variant interpretation.


Subject(s)
Databases, Genetic , Genomics , Genetic Testing , Genetic Variation , Humans
9.
Nature ; 604(7905): 310-315, 2022 04.
Article in English | MEDLINE | ID: mdl-35388217

ABSTRACT

Comprehensive genome annotation is essential to understand the impact of clinically relevant variants. However, the absence of a standard for clinical reporting and browser display complicates the process of consistent interpretation and reporting. To address these challenges, Ensembl/GENCODE1 and RefSeq2 launched a joint initiative, the Matched Annotation from NCBI and EMBL-EBI (MANE) collaboration, to converge on human gene and transcript annotation and to jointly define a high-value set of transcripts and corresponding proteins. Here, we describe the MANE transcript sets for use as universal standards for variant reporting and browser display. The MANE Select set identifies a representative transcript for each human protein-coding gene, whereas the MANE Plus Clinical set provides additional transcripts at loci where the Select transcripts alone are not sufficient to report all currently known clinical variants. Each MANE transcript represents an exact match between the exonic sequences of an Ensembl/GENCODE transcript and its counterpart in RefSeq such that the identifiers can be used synonymously. We have now released MANE Select transcripts for 97% of human protein-coding genes, including all American College of Medical Genetics and Genomics Secondary Findings list v3.0 (ref. 3) genes. MANE transcripts are accessible from major genome browsers and key resources. Widespread adoption of these transcript sets will increase the consistency of reporting, facilitate the exchange of data regardless of the annotation source and help to streamline clinical interpretation.


Subject(s)
Computational Biology , Databases, Genetic , Genomics , Genome , Humans , Information Dissemination , Molecular Sequence Annotation , National Library of Medicine (U.S.) , United States
10.
Hum Mutat ; 43(6): 682-697, 2022 06.
Article in English | MEDLINE | ID: mdl-35143074

ABSTRACT

DECIPHER (https://www.deciphergenomics.org) is a free web platform for sharing anonymized phenotype-linked variant data from rare disease patients. Its dynamic interpretation interfaces contextualize genomic and phenotypic data to enable more informed variant interpretation, incorporating international standards for variant classification. DECIPHER supports almost all types of germline and mosaic variation in the nuclear and mitochondrial genome: sequence variants, short tandem repeats, copy-number variants, and large structural variants. Patient phenotypes are deposited using Human Phenotype Ontology (HPO) terms, supplemented by quantitative data, which is aggregated to derive gene-specific phenotypic summaries. It hosts data from >250 projects from ~40 countries, openly sharing >40,000 patient records containing >51,000 variants and >172,000 phenotype terms. The rich phenotype-linked variant data in DECIPHER drives rare disease research and diagnosis by enabling patient matching within DECIPHER and with other resources, and has been cited in >2,600 publications. In this study, we describe the types of data deposited to DECIPHER, the variant interpretation tools, and patient matching interfaces which make DECIPHER an invaluable rare disease resource.


Subject(s)
Databases, Genetic , Rare Diseases , Genomics , Humans , Phenotype , Rare Diseases/diagnosis , Rare Diseases/genetics , Software
11.
Hum Mutat ; 43(8): 986-997, 2022 08.
Article in English | MEDLINE | ID: mdl-34816521

ABSTRACT

The Ensembl Variant Effect Predictor (VEP) is a freely available, open-source tool for the annotation and filtering of genomic variants. It predicts variant molecular consequences using the Ensembl/GENCODE or RefSeq gene sets. It also reports phenotype associations from databases such as ClinVar, allele frequencies from studies including gnomAD, and predictions of deleteriousness from tools such as Sorting Intolerant From Tolerant and Combined Annotation Dependent Depletion. Ensembl VEP includes filtering options to customize variant prioritization. It is well supported and updated roughly quarterly to incorporate the latest gene, variant, and phenotype association information. Ensembl VEP analysis can be performed using a highly configurable, extensible command-line tool, a Representational State Transfer application programming interface, and a user-friendly web interface. These access methods are designed to suit different levels of bioinformatics experience and meet different needs in terms of data size, visualization, and flexibility. In this tutorial, we will describe performing variant annotation using the Ensembl VEP web tool, which enables sophisticated analysis through a simple interface.


Subject(s)
Genomics , Software , Computational Biology , Databases, Genetic , Gene Frequency , Humans , Molecular Sequence Annotation , Phenotype
12.
Nucleic Acids Res ; 50(D1): D988-D995, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34791404

ABSTRACT

Ensembl (https://www.ensembl.org) is unique in its flexible infrastructure for access to genomic data and annotation. It has been designed to efficiently deliver annotation at scale for all eukaryotic life, and it also provides deep comprehensive annotation for key species. Genomes representing a greater diversity of species are increasingly being sequenced. In response, we have focussed our recent efforts on expediting the annotation of new assemblies. Here, we report the release of the greatest annual number of newly annotated genomes in the history of Ensembl via our dedicated Ensembl Rapid Release platform (http://rapid.ensembl.org). We have also developed a new method to generate comparative analyses at scale for these assemblies and, for the first time, we have annotated non-vertebrate eukaryotes. Meanwhile, we continually improve, extend and update the annotation for our high-value reference vertebrate genomes and report the details here. We have a range of specific software tools for specific tasks, such as the Ensembl Variant Effect Predictor (VEP) and the newly developed interface for the Variant Recoder. All Ensembl data, software and tools are freely available for download and are accessible programmatically.


Subject(s)
Databases, Genetic , Genome/genetics , Molecular Sequence Annotation , Software , Animals , Computational Biology/classification , Humans
13.
Nucleic Acids Res ; 50(D1): D1216-D1220, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34718739

ABSTRACT

The European Variation Archive (EVA; https://www.ebi.ac.uk/eva/) is a resource for sharing all types of genetic variation data (SNPs, indels, and structural variants) for all species. The EVA was created in 2014 to provide FAIR access to genetic variation data and has since grown to be a primary resource for genomic variants hosting >3 billion records. The EVA and dbSNP have established a compatible global system to assign unique identifiers to all submitted genetic variants. The EVA is active within the Global Alliance of Genomics and Health (GA4GH), maintaining, contributing and implementing standards such as VCF, Refget and Variant Representation Specification (VRS). In this article, we describe the submission and permanent accessioning services along with the different ways the data can be retrieved by the scientific community.


Subject(s)
Computational Biology , Databases, Genetic , Genetic Variation/genetics , Software , Animals , Genomic Structural Variation/genetics , Genomics , Humans , INDEL Mutation/genetics , Molecular Sequence Annotation , Polymorphism, Single Nucleotide/genetics
14.
Int J Mol Sci ; 22(21)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34769404

ABSTRACT

Age-related macular degeneration (AMD) is a common blinding disease in the western world that is linked to the loss of fenestration in the choriocapillaris that sustains the retinal pigment epithelium and photoreceptors in the back of the eye. Changes in ocular and systemic zinc concentrations have been associated with AMD; therefore, we hypothesized that these changes might be directly involved in fenestrae formation. To test this hypothesis, an endothelial cell (bEND.5) model for fenestrae formation was treated with different concentrations of zinc sulfate (ZnSO4) solution for up to 20 h. Fenestrae were visualized by staining for Plasmalemmal Vesicle Associated Protein-1 (PV-1), the protein that forms the diaphragms of the fenestrated endothelium. Size and distribution were monitored by transmission electron microscopy (TEM). We found that zinc induced the redistribution of PV-1 into areas called sieve plates containing ~70-nm uniform size and typical morphology fenestrae. As AMD is associated with reduced zinc concentrations in the serum and in ocular tissues, and dietary zinc supplementation is recommended to slow disease progression, we propose here that the elevation of zinc concentration may restore choriocapillaris fenestration resulting in improved nutrient flow and clearance of waste material in the retina.


Subject(s)
Choroid/pathology , Endothelial Cells/pathology , Macular Degeneration/pathology , Membrane Proteins/metabolism , Photoreceptor Cells/pathology , Retinal Pigment Epithelium/pathology , Zinc/metabolism , Animals , Cells, Cultured , Choroid/metabolism , Endothelial Cells/metabolism , Macular Degeneration/metabolism , Mice , Microscopy, Electron, Transmission/methods , Photoreceptor Cells/metabolism , Retinal Pigment Epithelium/metabolism
15.
ERJ Open Res ; 7(4)2021 Oct.
Article in English | MEDLINE | ID: mdl-34646879

ABSTRACT

Lessons learnt from the pandemic show that telehealth for cystic fibrosis allows multidisciplinary visits but better means for monitoring of lung function and microbiology are needed https://bit.ly/2V7g09x.

16.
Mol Genet Genomic Med ; 9(12): e1786, 2021 12.
Article in English | MEDLINE | ID: mdl-34435752

ABSTRACT

BACKGROUND: Variant interpretation is dependent on transcript annotation and remains time consuming and challenging. There are major obstacles for historical data reuse and for interpretation of new variants. First, both RefSeq and Ensembl/GENCODE produce transcript sets in common use, but there is currently no easy way to translate between the two. Second, the resources often used for variant interpretation (e.g. ClinVar, gnomAD, UniProt) do not use the same transcript set, nor default transcript or protein sequence. METHOD: Ensembl ran a survey in 2018 to sample attitudes to choosing one default transcript per locus, and to gather data on reference sequences used by the scientific community. This was publicised on the Ensembl and UCSC genome browsers, by email and on social media. RESULTS: The survey had 788 responses from 32 different countries, the results of which we report here. CONCLUSIONS: We present our roadmap to create an effective default set of transcripts for resources, and for reporting interpretation of clinical variants.


Subject(s)
Biomarkers , Computational Biology , Genomics , RNA, Messenger/genetics , Animals , Computational Biology/methods , Databases, Genetic , Genomics/methods , Humans , Software , Web Browser
17.
Cell Genom ; 1(2)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-35072136

ABSTRACT

The Global Alliance for Genomics and Health (GA4GH) aims to accelerate biomedical advances by enabling the responsible sharing of clinical and genomic data through both harmonized data aggregation and federated approaches. The decreasing cost of genomic sequencing (along with other genome-wide molecular assays) and increasing evidence of its clinical utility will soon drive the generation of sequence data from tens of millions of humans, with increasing levels of diversity. In this perspective, we present the GA4GH strategies for addressing the major challenges of this data revolution. We describe the GA4GH organization, which is fueled by the development efforts of eight Work Streams and informed by the needs of 24 Driver Projects and other key stakeholders. We present the GA4GH suite of secure, interoperable technical standards and policy frameworks and review the current status of standards, their relevance to key domains of research and clinical care, and future plans of GA4GH. Broad international participation in building, adopting, and deploying GA4GH standards and frameworks will catalyze an unprecedented effort in data sharing that will be critical to advancing genomic medicine and ensuring that all populations can access its benefits.

18.
Patient Educ Couns ; 104(3): 480-488, 2021 03.
Article in English | MEDLINE | ID: mdl-33268232

ABSTRACT

OBJECTIVE: To foster implementation of genomic testing in medical care by providing a cadre of physicians with 'hands on' experience in genomics, positioning them as opinion leaders in their medical speciality. This paper presents qualitative evaluation of immediate outcomes, in particular its impact on peer interactions. METHODS: Program design and delivery was informed by implementation science, behavior change and experiential learning theories. Inductive content analysis of transcribed audio-recordings from semi-structured post-project interviews with all participants (n = 12) was conducted. RESULTS: Participants reported the immersion experience improved their genomic capability, established them as credible genomic experts within their speciality and altered their practice in genomic medicine. Participants reported strengthening and widening of peer-to-peer and interdisciplinary communication, with both passive diffusion and active dissemination of information to peers. Some also became a resource for genetic professionals. CONCLUSIONS: Genomic immersion participants described elements which support sustained integration of an innovation, including immediate changes (e.g. use of genomic tests) and wider impacts (e.g. professional networks). PRACTICE IMPLICATIONS: This study supports a role for immersion as a successful strategy for enhancing engagement of non-geneticist physicians in genomics. Additional study is needed to understand how immersion experiences change the delivery of genomic services at the provider, practice and health system level.


Subject(s)
Medicine , Physicians , Genomics , Humans , Immersion , Problem-Based Learning
19.
Nucleic Acids Res ; 49(D1): D916-D923, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33270111

ABSTRACT

The GENCODE project annotates human and mouse genes and transcripts supported by experimental data with high accuracy, providing a foundational resource that supports genome biology and clinical genomics. GENCODE annotation processes make use of primary data and bioinformatic tools and analysis generated both within the consortium and externally to support the creation of transcript structures and the determination of their function. Here, we present improvements to our annotation infrastructure, bioinformatics tools, and analysis, and the advances they support in the annotation of the human and mouse genomes including: the completion of first pass manual annotation for the mouse reference genome; targeted improvements to the annotation of genes associated with SARS-CoV-2 infection; collaborative projects to achieve convergence across reference annotation databases for the annotation of human and mouse protein-coding genes; and the first GENCODE manually supervised automated annotation of lncRNAs. Our annotation is accessible via Ensembl, the UCSC Genome Browser and https://www.gencodegenes.org.


Subject(s)
COVID-19/prevention & control , Computational Biology/methods , Databases, Genetic , Genomics/methods , Molecular Sequence Annotation/methods , SARS-CoV-2/genetics , Animals , COVID-19/epidemiology , COVID-19/virology , Epidemics , Humans , Internet , Mice , Pseudogenes/genetics , RNA, Long Noncoding/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Transcription, Genetic/genetics
20.
Am J Physiol Cell Physiol ; 317(6): C1093-C1106, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31461344

ABSTRACT

This study explored the mechanism by which Ca2+-activated Cl- channels (CaCCs) encoded by the Tmem16a gene are regulated by calmodulin-dependent protein kinase II (CaMKII) and protein phosphatases 1 (PP1) and 2A (PP2A). Ca2+-activated Cl- currents (IClCa) were recorded from HEK-293 cells expressing mouse TMEM16A. IClCa were evoked using a pipette solution in which free Ca2+ concentration was clamped to 500 nM, in the presence (5 mM) or absence of ATP. With 5 mM ATP, IClCa decayed to <50% of the initial current magnitude within 10 min after seal rupture. IClCa rundown seen with ATP-containing pipette solution was greatly diminished by omitting ATP. IClCa recorded after 20 min of cell dialysis with 0 ATP were more than twofold larger than those recorded with 5 mM ATP. Intracellular application of autocamtide-2-related inhibitory peptide (5 µM) or KN-93 (10 µM), two specific CaMKII inhibitors, produced a similar attenuation of TMEM16A rundown. In contrast, internal application of okadaic acid (30 nM) or cantharidin (100 nM), two nonselective PP1 and PP2A blockers, promoted the rundown of TMEM16A in cells dialyzed with 0 ATP. Mutating serine 528 of TMEM16A to an alanine led to a similar inhibition of TMEM16A rundown to that exerted by either one of the two CaMKII inhibitors tested, which was not observed for three putative CaMKII consensus sites for phosphorylation (T273, T622, and S730). Our results suggest that TMEM16A-mediated CaCCs are regulated by CaMKII and PP1/PP2A. Our data also suggest that serine 528 of TMEM16A is an important contributor to the regulation of IClCa by CaMKII.


Subject(s)
Anoctamin-1/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Gene Expression Regulation , Neoplasm Proteins/genetics , Protein Phosphatase 1/genetics , Protein Phosphatase 2/genetics , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , Amino Acid Sequence , Animals , Anoctamin-1/metabolism , Benzylamines/pharmacology , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cantharidin/pharmacology , Chlorides/metabolism , Evoked Potentials/drug effects , Evoked Potentials/physiology , HEK293 Cells , Humans , Ion Transport/drug effects , Mice , Neoplasm Proteins/metabolism , Okadaic Acid/pharmacology , Patch-Clamp Techniques , Peptides/pharmacology , Phosphorylation/drug effects , Protein Phosphatase 1/antagonists & inhibitors , Protein Phosphatase 1/metabolism , Protein Phosphatase 2/antagonists & inhibitors , Protein Phosphatase 2/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Signal Transduction , Sulfonamides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...